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MARTINGALES WITH VALUES IN
UNIFORMLY CONVEX SPACES

BY
GILLES PISIER

ABSTRACT

Using the techniques of martingale inequalities in the case of Banach space
valued martingales, we give a new proof of a theorem of Enflo: every
super-reflexive space admits an equivalent uniformly convex norm. Let r be a
number in }2,%[; we prove moreover that if a Banach space X is uniformly
convex (resp. if 8x(e)/e’— when £ —>0) then X admits for some q <«
(resp. for some g <r) an equivalent norm for which the corresponding
modulus of convexity satisfies 8(¢)/e? — when ¢ —0. These results have
dual analogues concerning the modulus of smoothness. Our method is to study
some inequalities for martingales with values in super-reflexive or uniformly
convex spaces which are characteristic of the geometry of these spaces up to
isomorphism.

Introduction

In Section 1, we give (Th. 1.3) a martingale characterization of super-
reflexive Banach spaces. On one hand it is related to Chatterji’s results ([6]) on
martingales with values in Banach spaces which have the Radon-Nikodym
property, on the other hand it is related to a certain form of the strong law of
large numbers for Banach space valued martingales. The latter was previously
considered by A. Beck for martingales with independent increments in [3]. In
Section 2, we prove similar inequalities for uniformly convex (or uniformly
smooth) Banach spaces.

Section 3 contains our main results; there we show that the analogy between
the inequalities of Sections 1 and 2 is not a mere coincidence: Theorem 3.1
gives a simple way to construct an equivalent uniformly convex (smooth) norm
on a space X provided a certain inequality is satisfied by all X-valued
martingales. The modulus of convexity & obtained after such a renorming is
“of power type”: there are constants K >0 and q < « such that 8(¢) = Ke“ for
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all ¢ >0. Thus § “dominates” the modulus of convexity of the spaces L,. The
modulus of convexity obtained by Enflo in [7] apparently does not have that
property, it is only of “‘exponential type”’. In order to use Theorem 3.1 we have
to show that super-reflexive spaces satisfy its hypothesis. This is done
essentially in Lemma 3.1 which is the main technical difficulty of the paper. We
use there different martingale inequality methods, especially stopping times
techniques. Our results were announced in [23]. We refer to [21] for the
probabilistic part and to [18] for Banach space theory.

Notations and conventions

To avoid referring repeatedly to a probability space, we shall call briefly
martingale a sequence (X, ).zo of Banach space valued integrable variables on
some probability space (), o', P') for which there exists an increasing
sequence of sub-co-algebras (&£,).=0 of &’ such that

E“«X,,) =X, forall n=0,1,2,--.
For every martingale (X, ).=0 We shall denote (dX,).=: the “increments” of the
martingale (X, )n=0: V1 = 1: dX, = X, — X,_,; moreover we always make the
convention dX,= X,.
E will denote the expectation on ({}',P'). If 1 =a <» and Z is a Banach
space valued random variable on ({¥',P’), we shall write simply || Z|. for
U1 Z(w) |FdP(w))"; by || Z |- and || Z ||~ we mean respectively

ess sup|| Z(w)| and essinf|| Z(w)|.
wESY weQ

Throughout this paper we reserve the notation (), %, P) for the space
Q= {-1, + 1}" with its Borel o-algebra & and the usual invariant probability P.
A, will denote the trivial o-algebra {¢,2} on  and for all n =1 &, will be the
o-algebra generated by the first n-coordinates on { denoted by €,,---,e.. A
martingale relative to (Q,(.).=0,P) Will be called a Walsh-Paley martingale.
This terminology is justified by the correspondence between such martingales
and the partial sums of Walsh series for which Paley proved the first
“martingale” inequalities. If X is a Banach space, its modulus of convexity 8x
is defined by:

Ve €[0,2], 6x(e) = inf{l -

X+ yl
2
Its modulus of smoothness px is defined by

IxIst Iyt fx-yl=zel.

vt € (0,1, pett) = sup { =gy =y =1,
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1. Preliminaries; martingales with values in super-reflexive spaces

Recall that the distance d(E,F) between two Banach spaces E and F is
inf||T| |T™"|, where T runs over all the isomorphisms from E onto F (with
the convention inf ¢ = + ). We say (cf. [13]) that a Banach space E is finitely
representable in a Banach space F if for every subspace M of E and every
e >0 there is a subspace N of F such that d(M,N)=1+4+¢. Let ? be a
property concerning Banach spaces; we say that a Banach space E has the
property super-2 if all the Banach spaces which are finitely representable in E
have the property ?. As immediate consequences of that definition, we have:

super-#? - % and super-(super-?) < super-2 ;

moreover, if Q is another property concerning Banach spaces, and if ? = Q,
then super-#? = super-Q.

ExampLes. 1) Let us consider for a Banach space X the following prop-
erty: for some £ >0 every subspace Y of X satisfies d(Y,l,) = 1+ &. It is easy
to see that the associated super-property is: [, is not finitely representable in X.

2) The preceding example is rather simple; apparently the most interesting
super-property is super-reflexivity, which has been introduced and studied by
R. C. James in [13] and [14]. P. Enflo has obtained ([7]) the following
fundamental result: every super-reflexive space has an equivalent uniformly
convex norm. The converse had been previously proved by James in [13].
Several different properties of Banach spaces become, with the prefix super-,
equivalent to super-reflexivity. (See for example: A. Brunel and L. Sucheston
(41)

Earlier results of James concerning weak compacity and reflexivity have
analogues for super-reflexive spaces; for instance:

THeoreM 1.1. (a) ([24]). A Banach space X is super-reflexive if and only
if there exists an integer n and an £ > 0 such that for every n-tuple (x,,---,x.) in
the unit ball of X:

inf =n(l—¢).

lsksn

> oxi- > ox

1Sisk k<isn

In that case, we say that X is J —(n,e) convex.

(b) ([13)). A Banach space X is not super-reflexive if and only if for every ¢
in 10, 1{ and every integer n there exists a subset {x.,....: 1 =k =n, & = 1} of
the unit ball of X with the properties that
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(]'1) xq.“'.t‘k = %(xr,-“rkl + xé‘|‘ -skvl)
and
(1.2) | .S A = 2e

foreveryk =1,2,--- nand every choice of signs (&;), 1 =i = n. We then say that
X has the finite tree property.

ReMArk 1.1. The starting point of our work is to notice that the finite tree
property can be translated in terms of martingales: in Theorem 1.1.b, let us
define a sequence (X )mzo Oof random variables on {—1, + 1}" by:

XO=%(XI+X-I) Xk(glvsh'”):xe.-- K

for k=1,2,---,n, and X,, = X, for m > n.

The equality (1.1) means precisely that (X..)m=0 is 2 Walsh-Paley martingale,
and (1.2) ensures that inf,z.=. | dXi(e1,€5,---)|| = & for every choice of signs
(€m )men.

This remark leads us to the following proposition, which is the link between
our next results and the martingale characterization by Chatterji [6] of the
Banach spaces which have the Radon-Nikodym property (in short the property
RNP).

ProposiTiON 1.1.  Super-reflexivity is equivalent to the super-Radon-
Nikodym property.

Proor. It is well known that reflexivity implies RNP, therefore super-
reflexivity implies super-RNP. Conversely, if a Banach space E is not
super-reflexive, then by Theorem 1.1.b (see [13] for more details), there exists a
Banach space F finitely representable in E with the infinite tree property; that
is to say: for some £ >0 there exists a Walsh-Paley martingale (X, )m=0 With
values in F and such that

sup|| X, l-=1 and m>fl . 1(nlf ”NH dX. (e, €2 ") ||Z €.
The latter property ensures that (X.).=0 is everywhere non-convergent, there-
fore by Chatterji’s Theorem ([6]) F does not have the RNP; as a consequence,
E does not have the super-RNP, and this concludes the proof.
A sequence {X:)osi=~ ina Banach space is called basic of constant b if for
every sequence (a;) of scalars and every k =N

k N
E a;iX; 2 ouX; " .
i=o =0

=b
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A basic sequence of constant 1 is called a “‘monotone basic sequence”.
We shall need the following result of James [14]:

THeOREM 1.2. For each number b in j1,©[, a Banach space E is super-
reflexive if and only if there exist a constant C and two numbers r > 1 and q <=
such that

&(Zimr) = |2u]z (S nr)”

for all finite sequences (x.) in E which are basic of constant b.

Remark 1.2. Let X be a Banach space and (()',P’) some probability space;
it is clear that if 1 =a =, and if (X,).z0 is an X-valued martingale in
L.(€V,P';X), then the sequence (dX,).z0 IS a monotone basic sequence in
L.(Q,P’; X). In order to apply the preceding theorem to that situation we need:

ProrosiTioN 1.2. Let (M,u) be an arbitrary measure space with
0# u(Y)<o and let a be such that 1<a <». A Banach space X is
super-reflexive if and only if L.(Y,p; X) is also super-reflexive.

The above statement is well known; it is particularly clear if one knows
Enflo’s result in [7]. Since we wish to give a new proof of Enflo’s theorem, we
briefly indicate a direct proof.

Proor. The “if” part is trivial; so assume that X is super-reflexive. By
Theorem 1.1.a there exist n and ¢ >0 such that X is J-(n,e) convex. Since
1<a <, it is not difficult to show that there exists £’ >0 such that

S x-S xl=-em (%znx na)""

1=isk k<isn

inf
1=ksn

for all (x;) in X". Therefore:

E P

LPTETY RESET k<T=n
1< "
n(F3 )

It is clear that the last inequality remains valid if (x,,--+,x,) is an n-tuple of
elements of L.({),ux;X). A fortiori, we obtain:

_l l ay /o
> x— 2 ox _<ﬂ—+—(-—)> n sup||x |

1Sisk k<isn n

")”" - (n -1+0 —e’)")”"
- n

Ja

inf
1sk=n

for every n-tuple (x,, --,x.) in L,(Q',u;X). Since
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- . ryay la
(n 1+(1—¢") ) <1,
n
we conclude (Th. 1.1.a) that L,(},u;X) is super-reflexive.
The origin of the next theorem is a remark of S. Kwapien.

THEOREM 1.3. Let X be a Banach space; the following properties are
equivalent :
(i) X is super-reflexive.
(i) For every a in ]1,%[, there exist a constant C and r > 1 such that all
X-valued martingales (X.).=o0 satisfy:
)!H

(iii) There exist a constant C and r > 1 such that all X-valued Walsh-Paley
martingales (X.)a.zo Satisfy:

(iv) For every a in ]1,%[ there exist a constant C and q < such that all
X-valued martingales (X,)nz0 satisfy:

(1.3) sup | X, [l« = C( >

(1.4) sup| X, |l..=C (2

1/q
(1.5) (2 | dX. ||:) = Csup|| X, [la-
n=0 n

(v)  There exist a constant C and q < such that all X-valued Walsh-Paley
martingales (X, ).=0 satisfy:

1/q
(1.6) (2 I dx, ||‘im> = C sup|| X, [l

n=0

Proor. (i) = (ii) and (i) = (iv) follow from Remark 1.2, Proposition 1.2 and
Theorem 1.2 applied to the Banach spaces E = L, ({Y,P’; X), (1',P') being an
arbitrary probability space. The fact that the constants involved (namely C, r
and g ) do not depend on the probability space (), P’) follows from the obvious
remark that the space L.(Q',P’; X) is finitely representable in [, (X). (i) = (iii)
and (iv) = (v) are both trivial.

(v) = (i): If X is not super-reflexive, then (Theorem 1.1.b) X has the finite
tree property; that is to say (see Remark 1.1), for every integer n there exists an
X-valued Walsh-Paley martingale (X, ).=0 With the properties that:

(X:l-=1 and inf ||dX[--Z=1/2.
Isk=n
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Assuming that (1.6) is satisfied, we get:
n"-(12)=C,

which is a contradiction when n is large enough. The only remaining implica-
tion is (iii) = (i): we assume that X is not super-reflexive; since (cf. [13})
super-reflexivity is a self-dual property, X* is also non super-reflexive.
Therefore, by Theorem1.1.b, for each integer n and each ¢ < 1, there exists an
X*-valued martingale (X,)m=o such that | X,|l-=1 and infiz=n | dXi]l--Z €.
Since & -dXi is .-,-measurable, for every 6 >0 there exists an -
measurable variable Y, , with values in the unit ball of X such that (Y, (w),
adXi{w)yZ e — 0 for every o in Q, and every k =1,2,---,n. If we form the
X-valued Walsh-Paley martingale (uniquely) defined by X, = Z{_, &Y. for
m = n, we can observe that:

n(e —0)=D EdX,dX)=EX,X)=E|X.|.
k=1

But on the other hand, || X, (w) || = Zi_,|| Y- w) | = n for all w in Q; therefore a
standard computation shows that || X, ||-- = ¢. (¢, 0)n for some function ¢.(¢,8)
such that ¢.(¢,8)—1 when € > 1 and 6 —0. Hence we can choose ¢ and 6
such that || X, [--=n/2. If we now assume that (1.4) is satisfied, we get
n/2 = Cn'", which is imposible as soon as n is large enough. A contradiction
that concludes the proof.

ReMark 1.3. The above properties are also equivalent to:

(vi) Every X-valued Walsh-Paley martingale (X.)mzo such that
sup, || dX., |l < = has the property that X,/n tends to zero almost surely.

Assume (ii) and let (X, ).=0 be as in (vi); it follows from (1.3) that the
martingale (S, ).=zo defined by S, == _,dX../m converges to a variable S. in
L.(X) when n—«, By the martingale convergence theorem, S, converges
almost surely to S. when n — . By Kronecker’s Lemma ([21], p. 151) almost
surely S./n tends to zero when n—. This proves that (ii) = (vi). We only
sketch the proof of (vi) > (i): if X is not super-reflexive, then, by the argument
used for (iii) = (i), for every 8 < 1 and every integer n there exists an X-valued
Walsh-Paley martingale (X,.)mzo such that | X, [--=n and | dXi[.=1 for
k=1,2,---,n. An idea due to A. Beck (see [20], Exp. VII, Prop. 7) allows to
construct an infinite Walsh-Paley martingale (Z,, ). =0 such that sup, ||dZ, || =1
but also Vo € Q, lim sup,_.| Z.(»)]||/n > 0; this contradicts (vi) and concludes
the proof.
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ReMark 1.4, In Theorem 1.3, considering martingales is really a necessity:
if one replaces in properties (ii), (iii) and (vi) the word ‘“‘martingale” by
“martingale with independent increments”, then one obtains properties all
equivalent to “/, is not finitely representable in X’ (cf. for example [20], Exp.
VII); such a property is strictly weaker than super-reflexivity: because of a
remarkable counterexample of R. C. James [15], there exists a non-reflexive
Banach space in which [, is not finitely representable (more precisely: in which
even I is not finitely representable). If one replaces again in properties (iv)
and (v) “martingale” by “martingale with independent increments”, then one
obtains properties equivalent to < /.. is not finitely representable in X > (see
(19] §1). It is clear that the latter property is strictly weaker than super-
reflexivity, since [, has it.

2. Martingales with values in uniformly convex spaces

In a preliminary version of this work, I proved the inequalities of Section 2
for Walsh-Paley martingales; P. Assouad pointed out to me that it was possible
to extend them; he extended them further in {1] to obtain several results on
rearrangements of series in uniformly smooth spaces. T. Figiel has observed
that his results (as used in Proposition 2.1) give a nicer form to these
inequalities. The results concerning monotone basic sequences seem to go back
to [26].

THeoreM 2.1 (T. Figiel [9]). (a) There exist constants R and ¢ >0 such
that for any Banach space X of dimension at least 2:

Ve € 102, R% 8y (CE) = Brr0le) = Bx(e)

Vt € 10,9, px(t) = prax(t) = Rpx(t/c),
where L*(X) denotes the space L*(Q,u ; X) for an arbitrary non trivial measure
space ().

(b) For any Banach space X, the function ¢ — 6x(e)/e is increasing on
10,21.

PropoSITION 2.1.  If (X, )n=0 IS @ monotone basic sequence in a Banach space
X satisfying

sup =1

n

i=n
> X
i=0

then .
Ixoll+ 2 8xlx. D =1.
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Proor. Let n be an mteger we write S, for Z{I5x,; the definition of &x
gives: (since || S. | =] S,

Sa

L&Y +—’§1—5 (u""” )
2”|ISMI! ) 15l
or.
2.1 X+ Xn+
@n |s.+% ‘+||sn+.||ax(H§jJ,11)§nsmn.

If || Sa.i|=1, Theorem 2.1.b implies that

S =150 (122))

ISl

moreover, by the monotony of the sequence (X )nzo:

+M

IS. 1= |8, +%5

Therefore, (2.1) gives as a consequence:
1S 1+ 8x ([l %n i) = [ S I

adding these inequalities when n =20 we get:
Ixoll+ 3 8x (|2 = supl| Suil =1,
nz0 nz0

which concludes the proof.
The above proposition has the following dual analogue:

PrOPOSITION 2.2. If (Xa)nzo is @ monotone basic sequence in a Banach space
X satisfying

2 ox () =1
then:

sup

> x

The proof follows indeed from Proposition 2.1 and Lindenstrauss’ duality
formulae:
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Vi >0, px(t)= sup [‘i—ax*(s)]

O<e =2 2

Ve € 10,2, 8x-(e)= sup[’z—e—px(z)]. (See [17])
>0
In the sequel we make the convention that 8x(e) = +~ whenever X is a
Banach space and ¢ > 2.
If ¢ is an increasing function from R, to R, such that ¢(0) =0, we shall
define the Orlicz gauge ||-||, on R¥ in the usual way:

S (2 sen .

neEN

V(@) ERY, [(@)n s = inf{ ¢>0

Using Theorem 2.1, the above Propositions and Remark 1.2, we get:

THEOREM 2.2. There are constants K, L such that for any Banach space X of
dimension at least 2 and any X-valued square-integrable martingale (X, ).zo the
following inequalities hold:

@2 L1 AXe Tnsollo = sUpl X, | = L 1 dXe ol

ReMARK 2.1. 1) When dim X =1, (2.2) is valid if K=L =1 and if we
substitute to both px and 8x the function ¢ — t°. Obviously nothing stronger can
be said.

ii) The inequalities appearing in Theorem 2.2 can be considered as a
generalization respectively of a result of Kadec and of Lindenstrauss ([18], Th.
11.3.6). It should be observed that it is enough to prove only one of the
inequalities in (2.2), the other can then be proved using Lindenstrauss’ duality
formula. It is also of interest to notice that if the Walsh-Paley X-valued
martingales satisfy the left part (resp. the right part) of (2.2) for some constant
K (resp. L) and some function 8x strictly positive on ]0,2] (resp. px such that
px(t)/t =0 when t —0), then the space X is super-reflexive since it does not
have the finite tree property (resp. since its dual does not have the finite tree
property).

In [11], Theorem 2.2 is proved for martingales which are the partial sums of a
Rademacher series with coefficients in X.

In the preceding Theorem we have considered square integrable martingales
since Hilbert spaces are known to be the “most” uniformly convex and the
“most” uniformly smooth among Banach spaces of dimension at least 2 (cf.
[22]). For other cases we shall need the following result of T. Figiel ({8], Prop. 1
and added in proof):
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ProposiTION 2.3. Let q and p be respectively in [2,o[ and in 11,2]. If a
Banach space X satisfies Ve € ]0,2], 8x(e)= Ae? (resp. Vt € 10,0
px(t) = At®) for some constant A >0, then there exists a constant B >0
(depending only on A and q or p) such that Ve €10,2], Sr uix)(€) Z Be?
(resp. Vt € 10,%[, p1 @ ..x,(t) = Bt?) for any measure space (0, ).

ProrosiTioN 2.4. Let X be a Banach space.

(a) If forall € in 10,2], 8x(g) = Ac? for some constant A >0 and some q in
[2,[, than there exists a constant B >0 such that

E[| Xo|" + B 2, E[ldX. | =supE| X, [
nz| nz0

for all X-valued martingales (X.)nso.

(b) Ifforalltin J0,o[, px(t) = At® for some constant A and some p in ]1,2],
then there exists a constant A such that

supE[ X, | SE[X. [P +A X E[ldX. |
n nz|

for all X-valued martingales (X.)nzo.

Proor. (b) follows from (a) by an easy argument of duality, so we prove
only (a). By Proposition 2.3 we may assume that if ()',P’) is any probability
space: Ve € 10,2], 8., .r.x (€)= Be? for a constant B > 0. If (X, ).=0 is an
X-valued martingale in L,({},P’;X), then (dX,).=0 is 2 monotone basic
sequence in L, (€', P"; X); applying Proposition 2.1 we get that sup,=.E| X, ||* =
1 implies

E[X,|)" +B 2 E|dX, | =1,
n=1

hence E|X,|" + BZ,2E|dX.||*=1, which concludes the proof by
homogeneity.

3. Equivalent norms

In order to shorten the terminology we shall say that a Banach space X is
p-smooth, 1<p =2, if there exists an equivalent norm on X for which the
modulus of smoothness p satisfies Vt >0, p(t) = Ct® for some constant C. We
shall say that X is g-convex,2 = q <, if there exists an equivalent norm on X
for which the modulus of convexity & satisfies Ve >0, 8(¢) = Ce® for some
constant C > 0.
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Assume that a Banach space (X, | |) is g-convex (resp. p-smooth), then by
Proposition 2.4 there exists a constant C, such that all X-valued martingales
(X )nzo satisfy:

E| Xo|* + Z} E|dX, |* =C supE| X, |*
(resp. sup Bl X, I = C. [EH X + S E|dX, uv]).

The following Theorem is a converse to the preceding remark:

THeoREM 3.1. Let p and q be such that 1 = p, q < and let X be a Banach
space.

(a) Assume that there exists a constant C for which all X-valued Walsh-
Paley martingales (X, ).=o satisfy:

3.1 ElX, |+ 2} E|ldX, |* =C*supE| X, |,

then there exists an equivalent norm | | on X such that:

vx, yeX x| =lx[=Clx|
(3.2)

q

X~y
2

and Clx Ayl

2

x+y
2

’

in particular, the modulus of convexity & of (X,| |) satisfies:
Ve >0,8(e)=(1/q)(e/2C).

(b) Assume that there exists a constant C for which all X-valued Walsh-
Paley martingales (X, )nzo satisfy:

(3) SupE | X, P = C*(EI Xolf + 3 EldX. ),
n nzl
then there exists an equivalent norm | | on X such that:

1
Vi, ye X, Llx|=lx|=]x]
3.4

P —_ylP
and IX+)’| ;‘JX yl__<__|x|p+”y"p;

in particular, the modulus of smoothness p of (X,
p(t)=C*t*,

) satisfies Vt >0,
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Proor. (a) For all x in X we define |x| as

inf {(C*supE| X, = S Efax. ) ).

where the infimum runs over all X-valued Walsh-Paley martingales (X, )nzo
such that X, =x and sup, E|| X, ||* <. (3.1) gives us || x |=|x|; on the other
hand, if we consider the Walsh-Paley martingale (X,).=o defined by ¥Yn =0,
X, =x,weget|x|=C|x]|. Let x and y be elements of X, by the definition of
|x| and |y|, for all y >0 there exist Walsh-Paley martingales (X,).z0 and
(Y.)n=z0 such that:

Xo=x, supE| X, [ <o

Yo=y, supE| Y, |* <» and

C'supE| X, |- ;EHdX.. F=x"+y

C*supE|Y, [* -~ ZE[dY.[" =[y[* +7.

We then build a new Walsh-Paley martingale (Z,).zo by setting: Z, = (x + y)/2
and

1+8|
2

1_81

)Xn-|(€2,83,' <)+ ( > ) Y. (e2,63,--);

Vnz l,Z,.(En,Sz,"')=(

since sup. E|Z,[* = sup. ;(E|| X. [|* +E| Y. ||*) <o, we can write:

q

XXV < e supE| Z P~ T E[dZ [
n nzl

x—yl° E[dX.|* +E|dY. |
P - 2

nxi 2

E|X.[F +E| Y. |l
2

=C?sup

Syl

x—y|*

Since y >0 is arbitrary, we obtain the announced result. The function x —|x |
is obviously homogeneous on X and from the inequality we just proved follows
that {x € X| |x|= 1} is convex; hence x —|x | is a norm on X. Now if [x | =1,

|y|=1and |x - y|Z ¢, we have
(-G -2
2C = o q\2C/’

q)l/q

xX-)y
2

A

x—ﬂ‘s(l—
e

which settles the last assertion.
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(b) To prove this part two ways are possible:
(1) One is to define first {x} as

sup {(% sup E|X,|" - ..E?.. E|dX, II”)UP} )

where the supremum runs over all X-valued Walsh-Paley martingales such that
Xo=x and sup, E|| X, | < =; and then to define | x | as inf {Z;, {x:}}, where the
infimum is on all the finite subsets (x;)ie; in X such that Z;c;x; = x. The same
idea as in the proof of (a) shows that | | has the desired properties.

(2) Another way is to use duality: If all X-valued Walsh-Paley martingales
(X )azo satisfy (3.3), then all X*-valued Walsh-Paley martingales (X, )nzo
satisfy (3.1) with 1/p + 1/q = 1; appling part (a) to the space X* we obtain an
equivalent norm | |* on X* and it is easy to check that the norm | | on X which
is the dual of the norm | |* on X* satisfies the conclusions in (b} if and only if
| |* satisfies the conclusions in (a).

REMARK 3.1. The precise converse to Theorem 3.1 is evidently true: If | |
and || || are two norms on X satisfying (3.2) [resp. (3.4)], then all X-valued
Walsh-Paley martingales satisfy (3.1) [resp. (3.3)].

A particular case of Theorem 3.1 is:

CoROLLARY 3.1. Let (h,).en be the Haar orthonormal system on the Lebes-
gue interval. A Banach space X is 2-convex (resp. 2-smooth) if and only if there
exists a constant C such that

2 1/2
d)

(Zix ) s (]t
[resp. (3.5 (” 2 ha(t)xn 2dt>”2§C(2||x,. ||2>”2]

for all sequences (x,).en Of elements of X among which only a finite number are
not zero.

ReMArk 3.2. If X is 2-convex and 2-smooth, then Corollary 3.1 and the
Theorem 1 in [16] imply that X is isomorphic to a Hilbert space. This result was
previously proved in [11].

Corollary 3.1 gives a complete answer to a problem of [16] (conjecture and
Remark 1). S. Kwapien noticed shortly after [16] appeared that there exist
spaces (namely L? for p >2) which satisfy (3.5) but are not isomorphic to a
Hilbert space.

The following result improves Enflo’s Theorem [7]. In the case of spaces
with local unconditional structure, it is due to Figiel and Johnson [10].
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THeOREM 3.2. Every super-reflexive space is g-convex and p-smooth for
some g < and some p > 1.

The main difficulty here is the following Lemma, the proof of which we
postpone till the end of this paragraph.

LeEmMa 3.1. Let r be a number in 11,2] and let X be a Banach space;
assume that — for some constant D —all the X-valued martingales (X, )20
satisfy:

(3.6) Yn EN 1 X = D(n+1)" sup ||dXi ||-;
0=<k=n

then for all p <r there exists a constant C, for which all X-valued Walsh-Paley
martingales (X, )m=o Satisfy:

supE| X, I = G, (E|Xulf + T E[ldX, |F).

Therefore, by Theorem 3.1, X is p-smooth.

Proor oF THEOREM 3.2, It is an easy consequence of Lindenstrauss’ duality
formula that if X* is p-smooth, then X is g-convex with 1/q + 1/p = 1. If X is
super-reflexive, then (cf. [13]) X* is also super-reflexive, therefore it is enough
to prove that a super-reflexive space is p-smooth for some p > 1. Now if X is
super-reflexive, Theorem 1.3 ensures that the assumption of Lemma 3.1 is
satisfied for some r > 1; hence the conclusion of Lemma 3.1 is valid and if
1 <p <r, the space X is p-smooth.

The new result in Theorem 3.2 is that every uniformly convex or uniformly
smooth space is gq-convex and p-smooth for some g <% and p >1 (such
spaces are super-reflexive by the results of [13]). This can be extended further
to:

THEOREM 3.3.

(a) If a Banach space X satisfies px(t)/t* —0 when t =0 for some « in
(1,2[, then there exists a number p > a for which X is p-smooth.

(b) If a Banach space X satisfies 8x(e)/e* — © when ¢ — 0 for some a in
12,00[, then there exists a number q < a for which X is g-convex.

As above, by an easy duality argument it is enough to prove only (a). We
shall need some extra notation: we define for each integer n = 1 the number y %
as the smallest positive constant y for which all X-valued martingales (X, )mzo
such that X, =0 satisfy
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1% I = v sup || dXi ..
Obviously: Vn = 1, yX = n. The introduction of the numbers vy is motivated
by:
LEmMMA 3.2. Vn, k=1, y5=yXy¥.

ProoFoFLEMMA 3.2, If (X )m=ois an X-valued martingale such that X, =0,
then (X )m=o has the same property; hence

(3.7 (| X

L= 'yf sup || Xk = Xm-1k ”2
1=m=n

Now set Z7 = Xm-uvk+i— Xm-ne; (Z7)izo0 is (for each m = 1) a martingale such
that Z§ =0, therefore:

Ym =12, || Z7 |.=y% sup |dZ" |..
1=j=sk

or equivalently:
Vm =12, “ Xk = Xim-1x

¥ sup [ldX; ..

(m—Nk<j=mk

2 = Y
Combining this last inequality with (3.7) we get
1 Xa o= v2yE sup [ldX, |-,
=j=n

which proves that yX = yXy¥.

ProoF ofF THEOREM 3.3.a. If px(f)/t* =0 when t —0, an easy computation

Y« —0 when n —>», where we have denoted by p, the number

shows that p,/n
[(1,1,---,1,0,0,---)|,,. where | is repeated n times.
By Theorem 2.2 (excluding the trivial case X =R), we know that all

X-valued martingales such that X, =0 must satisfy for all n = 1

1X.

2= Lp. sup [|dXa [
I1=m=n

in other words, we have thatforalln = 1, yX = Lp,, therefore we also have that
yxIn"*—0 when n —«. But it is an easy consequence of Lemma 3.2 and the
fact that n —y is increasing that yX/n'* —when n — only if there exist
a number r > « and a constant D such that yX =Dn'" foralln = 1. Weareina
position to apply Lemma 3.1 and we obtain that X is p-smooth as soon as
a < p <r, which concludes the proof.
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One should notice that we obtain the conclusion as soon as there exists an
integer N for which y¥ < N'*, which is apparently a stronger result.

Proor oF LEMMA 3.1.  We split the proof into several sublemmas:

SuBLEMMA 3.1. Under the assumption of Lemma 3.1, for all p <r there
exists a constant a, such that all X-valued Walsh-Paley martingales (X )mzo
satisfy:

(3.8 sup | Xa = e,

ip
(n;)n X, ||°) “m

ProoF. Let (X, )n=0 be an X-valued Walsh-Paley martingale; to prove (3.8),
there is no loss of generality in assuming that (X, )m=o is finite, i.e. that dX,, =0
if m is greater than some integer N. We have then: sup, || X, |l = || Xv |l.. Recall
that <4, is the o-algebra on Q = {— 1, + 1}" generated by the n first coordinates;
we shall make use of the fact that for all n = 1 the variable w — || dX,(w)] is
A._- measurable. For simplicity, we set

l/P
(Shaxr)”|.

S =

and proceed to prove (3.8).
For each integer k =0, we define a random subset A, (w) of N in the following
way:

Ak(w)={n =0

S S
s <ldX. @) = 55 |

The following properties of these subsets are easily checked:

i I k'#k" then Aw(w)NA{w)=¢ and UizoAi(w)={n=0]|
|| dX.(w)] # 0} for all & in Q.

(i) For each k =0, the cardinal of A.(w) noted | A.(w)] satisfies: Vo € (),
| Ax(w)| <24,

(i) Foreachk =0andeachn = 1theset{w € Q| n € Ac(w)}isin oA, ;.
We immediately deduce from (i) that:

(3.9) PAED)

k=0

> dX.()

neEA ()

R
For each k = 0 we can define a sequence of stopping times (T} )20 by setting:
Yo €1

T (w)=inf{n EA,(w)} and for A =12,

T (w) =inf{n € Ac(w),n > T:_(w)} withtheconvention inf¢ =N +1.



Vol. 20, 1975 MARTINGALES 343

By property (iii) these stopping times are “predictable”, thatis: VA =1, Ty — 1
is also a stopping time; therefore VA = |

(3.10) E“s, (dX75,(+)) =0.
By the definition of the (T ),=o and by (ii):
Adw)C U (T (o)
0=A <2

therefore, since dXy.,=0:

2 dX,(w)= . dXriew).

yk +
nEAL (@) 0=A <2

Now if for each A =0 we define X% (-) as

E dXT,':l»)(' ),
OSp DA
then (3.10) ensures that (X%), ., is a martingale with respect to the sequence of
o-algebras (sfr+).=0; applying (3.6) to this martingale, we obtain: Vk =0

3

3.1

Z an(‘)H =IIX-§‘<+!7|||2§D2“<+I)/r sup “d)?‘,{]
2 asA <2kt

neEA(-)
returning to the definition of A.(-), we observe that for all A = 0:

S

2k/P .

(3.12) dX |l =
Combining (3.12), (3.11) and (3.9), we obtain:

” X~ ”z =D?2'" ( Z 2k<'/r—l/p>) S.

k=0
This concludes the proof (since 1/r — 1/p < 0) with

a, =D2" Y 24T <o,

k=0

SuBLEMMA 3.2. Assume that the conclusion of Sublemma 3.1 is valid, then
for all p <r there exists a constant B, such that all X-valued Walsh-Paley
martingales (X, )m=o satisfy

|8

2ip
3.13) (super™Pisupl X, 1>c}) =8, (S ENaX.IF)
c>0 n=0

PROOF. If (Xin)m=o is an X-valued martingale, then (|| X, [*)m=o is a submar-
tingale, therefore we have by Doob’s inequality ([21], p. 69):
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(3.14) Ve >0, c’P(sup|| X | > ¢) = supE| Xa |-

Consider an X-valued Walsh-Paley martingale (X.).=o such that
Z.20ElldX. [P =1,and setforn =0,1,-+,V, = Zozk=. | dXi |F. Given a >0, we
can define a stopping time T by setting:

Vo €EQ, T(w)=inf{n 20| V.., >a"}.
We can write, for ¢ >0

P(sup|| X, [>¢c) S P(T <o)+ P(T =, sup|| X, |>c)=P(T <x)+
(3.15)
P{T >0, sup|| X,.r||>c);

applying (3.14) and (3.8) to the martingale (1;r>0 X1 »1)n=0, We get:

P(T>0,sup|| X,.r|>¢c)= %supE(l(Bo)HX,. )
= (ap/c?) | tarsa VL.
The definition of T yields: 1;r- Vr = a”®, therefore we get:

P(T >0,sup|| X..r

|>c)=ai(alc);
on the other hand,
P(T <o) = P{suﬂp V.> a"} =t/a’.
With these estimates (3.15) implies:
P(sup| X. ||>c)=1/a® +aj(a/c)’
for all a,c¢ >0. Choosing (for simplicity) @ =\/c, we get Yc =1,

P(sup|| X.[>c)=(+a)(1/c??),

which concludes the proof with B, = (1+a2)™.

The argument of the above proof is classical, and appears in almost every
book concerned with martingale inequalities in the scalar case ([12], [21]).

The proof of the next lemma is directly inspired from the methods in {5]. Its
redaction has been simplified thanks to an observation of T. Figiel.

SuBLEMMA 3.3. Assume that the conclusion of Sublemma 3.2 is valid, then
for all p <r there exists a constant vy, such that all X-valued Walsh-Paley
martingales (X, )n=0 satisfy:

(3.16) sup c"P{sup | X [|> c} =)D EldX. |
c>0 n n=0
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ProOF. Let us assume that (X, ). =0 is a “‘finite’’ Walsh-Paley martingale, so
that dX,. =0 for all m = N and that Z,.E[|dX, | =1. Let M be a “large”
integer. We define the shift § on Q={—1, + 1}" by; 0(e1,€2,* ) = (£2,€3,"**),

and we consider the Walsh-Paley martingale (Z,, )=« uniquely defined by:
j=M-1

Vm zMN, Z, = [XN,, + D EpnXnoio 0‘”] M,

i=
As is readily seen, 2, ., E||dZ, |F = 1. To lighten the notations, we denote the
random variable sup...|| X, || by ®.
We observe that

sup M™""®o g™ =2sup|Z, |.
o=j=M-i nz0
We choose ¢, large enough so that (28,/c¢.)’”” = 1—e™', and we apply 3.13 to the
martingale (Z, ) zo:

P{ sup M'””fbof)"">c0}§P{sup||Zn ||>c(,/2}

Osj=M-1 nz0
<(2 / )P/Z - l — !
=28, /¢y = e .

When j =0,---,M — 1, the variables ® - 6™ are independent and equidistri-
buted, therefore:
e 's P{ sup M™'""dogN = co} =P{M """ ®=cH™,
0sjsM-|

as a consequence: P{®>c,M'""}=1-¢ "™ = 1/M, which we proved for an
arbitrary integer M. From this last fact, (3.16) is easily drawn.

We can now conclude the proof of Lemma 3.1 by an argument similar to that
of Sublemma 3.2:
Let p be given with p <r; we chéose p, with p <p,<r. If (X.)m=o is an
X-valued Walsh-Paley martingale, we define for each ¢ >0 a stopping time T
by:

Vo €Q, T(w)= inf{n 20 D |ldXi(w)|"> c"'}.
1

0sj=n+

We have:

P{sup| X, [|>c}=P{T <o} +P{T == sup]| X..r

[>c}

P{(Z1ax 1) "> e} + () B (10 S haxi )

A

IiA

p{ (3 1ax. nm)””' > c} +(2) B (e n Slhax.lp).
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If we multiply the last line by pc”~'dc and integrate with respect to ¢, we get:

plp, p
E Sup ” X" ”P é E (220” dX" ”pl) {] + (‘Yl’l)p‘ + ('Ym)p' I;I__—;] 5

it remains to observe that:

P
> dX, = (3 lax. )"

to conclude the proof of LLemma 3.1.
The final step can be proved alternatively by an argument of interpolation.

REMARK 3.3. Let a, p, g be given in [1,[ and consider the following
properties %,(a), €,(a) for a Banach space X:

There exists a constant s,(a) such that all X-valued

#.(a) martingales (X, ).=o satisfy:

Bsup| X, | =5, (@B{( 5 Jax. Ir)"}.

There exists a constant ¢,(a) such that all X-valued

@, (a){ Martingales (X,)m=o satisfy
alq
B{(S1ax. 1)} = ci@rBsupl X,
nz0 n=0

We have seen (Theorem 3.1 and Proposition 2.4) that X is p-smooth iff X has
the property %,(p) and that X is g-convex iff X has the property €,(q). By
reproducing the basic techniques of the proofs of the Burkholder-Davis-Gundy
inequalities, it is possible to show that: (i) for each p in 11,2}, all the properties
%, (a) are equivalent when « runs in [1,%[. (ii) for each g in {2,%[, all the
properties ¥,(a) are equivalent when « runs in [1,].

We give only indications on the proof: we first notice that the Burgess-Davis
decomposition (see [12], p. 91) is obviously true for Banach space valued
martingales with the same proof. If 1 = a < 8, the proof that &,(8) > ¥, (a)
and €,(B)=> €,(a) canbe achieved by reproducing, for instance, the method of
[21], page 181-182. Taking into account the obvious equivalence of “X has
(o) and “X* has 6, (a’)’when a €]1,o[and l/a + 1/a’ =1,1/p +1/p’ =1,
we observe that it remains only to prove that %,(1) implies %,(a) for some
a > 1 and that €,(1) implies €,(a) for some a > 1. These last implications can



Vol. 20, 1975 MARTINGALES 347

be proved easily by using the results of [5], as we already did in the proof of
Sublemma 3.3.
The above remark was independently observed by P. Assouad.

4. Remarks and problems

I do not know if Lemma 3.1 can be proved assuming only that (3.6} is
satisfied by all the X-valued Walsh-Paley martingales. The following question
is related to this problem:

QuesTioN 1. Let g be given in ]2,[. Assume that for any equivalent norm
on a Banach space X the corresponding modulus of convexity satisfies
8(e)/e® A when ¢ tends to zero. Is it true that there exists foralln and d < 1
an X-valued Walsh-Paley martingale (X, ). =0 With the property that: | X, . = 1
and Vo €Q, Yk = 1,2,---.n, |dXi(w)||Zd/n""?

A positive answer to Question 1 would give a natural extension of Theorem
1.1.b.

B. Beauzamy has defined in [2] the notion of uniform convexity of an
operator. If u is an operator from Y to X, the modulus of convexity of u is
defined as:

|x,y €Y,

. +
6.,(5)=mf{l-—”x—2—y IxlI=1, [lyl=1, ||u(x—y)||ge}.

Similarly, one can define the modulus of smoothness of u as:

pu(t) = sup {IXHONLI— Dy e x y e v e =gy g=1).

It is clear that some of our results immediately extend to the case of operators
with mere notational changes (at least Theorem 3.1 and Lemma 3.1). But, as
pointed in [2], the analogue of Theorem 3.2 for operators is false.

A Banach space X is called of type p if for each sequence (x,) of elements of
X such that 2| x, |’ <, the Rademacher series =r,(¢)x, is convergent for
almost every t in [0,1} (we denote (r,) the Rademacher functions on the
Lebesgue interval).

A counterexample due to James ({15]) shows that there exists a Banach space
which is of type p for some p > 1 but which is p-smooth for no p > 1. In view
of this counterexample, the following question of H. P. Rosenthal is of
particular interest:

QuesTioN 2. Is every space of type 2 super-reflexive?
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We wish to give a (very) partial result on this question: Let (g.).=, be a
sequence of orthonormal Gaussian variables with mean zero on the Lebesgue
interval, and let X be a Banach space. We define for each n =1,2,--- the
numbers a X and b X as the smaller positive constants respectively a and b such
that

HSer) 2 S

for all n-tuples (x,,--+,x.) of elements of X.
S. Kwapiefi has proved in [16] that sup,asby <= if and only if X is
isomorphic to a Hilbert space. Using the same idea as his, we prove:

=a(3ap)”

ProrosITION. If aXb%/Logn tends to zero when n—x, then X is super-
reflexive.

Proor. Let (u;) be the n X n matrix of an isometry on I5. By the rotational
invariance of the canonical Gaussian measure on (7, we have, for all n-tuples
(x:;) of elements of X:

(Z i UiiX;

2\ 1/2
X
) <b>

; 8iXi

i=n 1/2
saXbX(3xl)
2 i=1
Since matrices such as u;; correspond to the extremal points of the unit ball of
B(3), it is clear, by an argument of convexity, that the above inequality
remains valid if u;; defines an operator of norm less than 1 on /5. The Hilbert
matrix (h}) of order n is defined by:

| .
— T if i+j#n+1
Vi,j=<n, h{;={ ntl-i-y
0 .
otherwise
It is known (see [25]) that when n goes to infinity the norm of (k) as an
operator on /; is bounded by some constant H.
Assume that X is not super-reflexive, then ([13]) for all integer n there exists

Xi,- X, in the unit ball of X such that: V(a;) €R"

n

z aX:| ,

1}
i=|

therefore we must have: V(a;) €ER"

n 2\ tf2 i=n 12
(Z sup ) = Haxb% (Z | Iz)

i=1 k=n

uM»

uaj
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If we denote by ¢, the left-hand side of the preceding inequality for
ay=a,=:-+=a, = 1/\/n, an elementary computation shows that ¢./Logn
does not tend to zero when n—x; therefore aXb}/Logn does not either,
which proves the proposition.

As noticed by T. Figiel, an improvement of the methods of {10] yields that if
a Banach space X with local unconditional structure is of type p, p =2, then X
is p-smooth; the example in {15] suggests

QuestioN 3. If p € ]1,2], does there exist a super-reflexive Banach space of
type p which is not p-smooth?
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