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MARTINGALES WITH VALUES IN 
UNIFORMLY CONVEX SPACES 

BY 

GILLES PISIER 

ABSTRACT 

Using the techniques of martingale inequalities in the case of Banach space 
valued martingales, we give a new proof of a theorem of Enflo: every 
super-reflexive space admits an equivalent uniformly convex norm. Let r be a 
number in ]2,00[; we prove moreover that if a Banach space X is uniformly 
convex (resp. if 8x(~)/er-" oo when e--*0) then X admits for some q <oo 
(resp. for some q < r) an equivalent norm for which the corresponding 
modulus of convexity satisfies 8 (e)/e q ---, ~ when e --~ 0. These results have 
dual analogues concerning the modulus of smoothness. Our method is to study 
some inequalities for martingales with values in super-reflexive or uniformly 
convex spaces which are characteristic of the geometry of these spaces up to 
isomorphism. 

I n t r o d u c t i o n  

In  Sec t i on  1, we g ive  (Th. 1.3) a mar t inga le  c h a r a c t e r i z a t i o n  of  supe r -  

re f lex ive  B a n a c h  spaces .  On  one  hand  it is r e l a t ed  to  C h a t t e r j i ' s  r e su l t s  ([6]) on  

mar t i nga l e s  wi th  va lue s  in B a n a c h  s p a c e s  wh ich  have  the  R a d o n - N i k o d y m  

p r o p e r t y ,  on the  o t h e r  hand  it is r e l a t ed  to a ce r t a in  f o r m  of  the  s t rong  law of  

la rge  n u m b e r s  fo r  B a n a c h  s p a c e  va lued  mar t inga les .  The  l a t t e r  was  p r e v i o u s l y  

c o n s i d e r e d  b y  A.  B e c k  fo r  mar t inga l e s  wi th  i n d e p e n d e n t  i n c r e m e n t s  in [3]. In  

Sec t i on  2, we  p r o v e  s imi la r  inequa l i t i e s  fo r  u n i f o r m l y  c o n v e x  (or  u n i f o r m l y  

s moo th )  B a n a c h  spaces .  

S e c t i o n  3 con ta in s  ou r  ma in  r e su l t s ;  t he re  we  show tha t  the  a n a l o g y  b e t w e e n  

the  inequa l i t i e s  of  Sec t ions  1 and  2 is no t  a mere  c o i n c i d e n c e :  T h e o r e m  3.1 

g ives  a s imple  w a y  to c o n s t r u c t  an equ iva l en t  u n i f o r m l y  c o n v e x  ( smoo th )  n o r m  

on a s p a c e  X p r o v i d e d  a ce r t a in  inequa l i ty  is sa t i s f ied  b y  all X - v a l u e d  

mar t inga les .  T h e  m o d u l u s  of  c o n v e x i t y  8 o b t a i n e d  a f t e r  such  a r e n o r m i n g  is 

" o f  p o w e r  t y p e " :  the re  a re  c o n s t a n t s  K > 0 and  q < oo such  tha t  ~ ( e )  >_- K e  q fo r  
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all e > 0. Thus 6 "dominates"  the modulus of convexity of the spaces Lq. The 

modulus of convexity obtained by Enflo in [7] apparently does not have that 

property,  it is only of "exponential  type".  In order to use Theorem 3.1 we have 

to show that super-reflexive spaces satisfy its hypothesis. This is done 

essentially in Lemma 3.1 which is the main technical difficulty of the paper. We 

use there different martingale inequality methods, especially stopping times 

techniques. Our results were announced in [23]. We refer to [21] for the 

probabilistic part and to [18] for Banach space theory. 

Notations and conventions 

To avoid referring repeatedly to a probability space, we shall call briefly 

martingale a sequence (X.).~o of Banach space valued integrable variables on 
some probability space (IT. ~ ' .  P') for which there exists an increasing 

sequence of sub-it-algebras (~'.)._>o of ~t' such that 

E~"~(X.÷1) = X. for all n = 0. I .2 . - - . .  

For every martingale (X.) .  so we shall denote (dX.) .  ~ the " increments"  of the 

martingale (X.).~o: Vn > 1: dX. = X.  -X._~;  moreover  we always make the 

convention dXo = Xo. 
E will denote the expectation on (IT.P'). If 1 -<a  < ~  and Z is a Banach 

space valued random variable on (IT.P'). we shall write simply ][ZII~ for 

( f  It Z(oJ)lf°d P'(w))~'~ ; by II z It® and II z tl-~ we mean respectively 

ess supllg(~o)ll and ess infllZ(to)l[. 
~ E ~ '  m E N '  

Throughout this paper we reserve the notation (EI,~,P) for the space 
1) = { - 1, + l} N with its Borel tr-algebra ~t and the usual invariant probability P. 

~to will denote the trivial ~-algebra {4~,~} on 1) and for all n ~ l ~ .  will be the 

o-algebra generated by the first n-coordinates on 1) denoted by e~,-- ' ,e, .  A 

martingale relative to (l),(~,),_~0,P) will be called a Walsh-Paley martingale. 

This terminology is justified by the correspondence between such martingales 
and the partial sums of Walsh series for which Paley proved the first 

"martingale" inequalities. If X is a Banach space, its modulus of convexity 6× 

is defined by: 

V e E [ 0 . 2 ] , 6 x ( e ) = i n f { 1 - l l ~ - ~ l l  "x[ '=<l ,,y,,--<l [ , x - y , , > e } .  

Its modulus of smoothness px is defined by 

Vt E[O,~[ ,px ( t )=sup  { [Ix + t Y l t + l [ x - t y l l - 1 1  Ilxll=llyl[= 1} 
2 
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1. Preliminaries; martingales with values in super-reflexive spaces 

Recall that the distance d ( E , F )  between two Banach spaces E and F is 

infll T I1 [I T-* I1, where T runs over all the isomorphisms from E onto F (with 

the convention inf tk = + 0o). We say (cf. [13]) that a Banach space E is finitely 

representable in a Banach space F if for every subspace M of E and every 

e > 0  there is a subspace N of F such that d(M,N)<=l  +e.  Let ~ be a 

property concerning Banach spaces; we say that a Banach space E has the 

property super-~ if all the Banach spaces which are finitely representable in E 

have the property 9. As immediate consequences of that definition, we have: 

super-~ :::> ~ and super-(super-~) ¢o super-~ ; 

moreover, if Q is another property concerning Banach spaces, and if 9 ~ Q, 

then super-~ ::> super-Q. 

EXAMPLES. l) Let  us consider for a Banach space X the following prop- 

erty: for some e > 0 every subspace Y of X satisfies d(Y,l~) -> 1 + e. It is easy 

to see that the associated super-property is: l~ is not finitely representable in X. 

2) The preceding example is rather simple; apparently the most interesting 

super-property is super-reflexivity, which has been introduced and studied by 

R. C. James in [13] and [14]. P. Enflo has obtained ([7]) the following 

fundamental result: every super-reflexive space has an equivalent uniformly 

convex norm. The converse had been previously proved by James in [13]. 
Several different properties of Banach spaces become, with the prefix super-, 

equivalent to super-reflexivity. (See for example: A. Brunel and L. Sucheston 

[4].) 
Earlier results of James concerning weak compacity and reflexivity have 

analogues for super-reflexive spaces; for instance: 

THEOREM 1.1. (a) ([24]). A Banach space X is super-reflexive if and only 

if there exists an integer n and an e > 0 such that for every n-tuple (x , , . . . ,  x,)  in 

the unit ball of  X :  

inf I ~'~ x i -  ~ x~ - < _ n 0 - e ) .  
l ~ k l n  I ~ l ~ k  k < i ~ n  

In that case, we say that X is J -  (n,e)  convex. 

(b) ([13]). A Banach space X is not super-reflexive i[ and only if[or every e 

in ]0, l[ and every integer n there exists a subset {x~,.....~k : 1 -<_ k _-< n, e~ = +- l} of  

the unit ball of  X with the properties that : 
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- -~ (x~,...~kj + x~,. .~_~) ( l . l )  x~,....~k - 2  

and 

(1.2) IIx~,. . . . .  , -  x,,. . . . . . .  _,Ii>=2E 

329 

for every k = 1,2, . . . ,  n and every choice of signs (e,), 1 <= i <= n. We then say that 

X has the finite tree property. 

REMARK 1.1. The starting point of our work is to notice that the finite tree 

property can be translated in terms of martingales: in Theorem i . l .b,  let us 

define a sequence (X,, ),,__>o of random variables on { -  1, + 1} N by: 

Xo=½(x,+x_,) Xk(e,,E,.,. . .)=x~, ~k 

for k = 1,2, . . . ,n ,  and X,, = X, for m > n. 

The equality (1.1) means precisely that (X,,),1__>o is a Waish-Paley martingale, 

and (1.2) ensures that inf,_<_k<. IIdXk(e,,e2,'" ")]l------e for every choice of signs 

This remark leads us to the following proposition, which is the link between 

our next results and the martingale characterization by Chatterji [6] of the 

Banach spaces which have the Radon-Nikodym property (in short the property 

RNP). 

PROPOSmON 1.1. Super-reflexivity is equivalent to the super-Radon- 

Nikodym property. 

PROOF. It is well known that reflexivity implies RNP, therefore super- 

reflexivity implies super-RNP. Conversely, if a Banach space E is not 
super-reflexive, then by Theorem i. 1 .b (see [ 13] for more details), there exists a 

Banach space F finitely representable in E with the infinite tree property; that 

is to say: for some e > 0  there exists a Walsh-Paley martingale (X,)m>=o with 

values in F and such that 

suplIx.  It=_<-I and inf inf [IdX,(e,,e,_,..')ll>-e. 
n n ~ l  ( e , ) E (  I , + 1 }  N 

The latter property ensures that (X,),__>o is everywhere non-convergent, there- 

fore by Chatterji 's Theorem ([6]) F does not have the RNP; as a consequence, 

E does not have the super-RNP, and this concludes the proof. 

A sequence (xi)o~<N ina  Banach space is called basic of constant b if for 

every sequence (a,) of scalars and every k-< N 

II ooX l bl o ,ll 
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A basic sequence of constant 1 is called a "monotone  basic sequence" .  

We shall need the following result of James [14]: 

THEOREM 1.2. For each number b in ]1 oo[, a Banach space E is super- 

reflexive if and only if there exist a constant C and two numbers r > 1 and q < oo 

such that 

[or all finite sequences (x,)  in E which are basic of  constant b. 

REMARK 1.2. Let  X be a Banach space and (fY,P') some probability space; 

it is clear that if l=<a _-<~, and if (X,),~o is an X-valued martingale in 

L~( fF ,P ' ;X) ,  then the sequence (dX.),.~o is a monotone basic sequence in 

L~ ( i f ,  P'; X).  In order to apply the preceding theorem to that situation we need: 

PROPOSmON 1.2. Let (f~',~ ) be an arbitrary measure space with 

0 ~ / ~ ( f Y ) < ~  and let o~ be such that 1 < ~ < ~ .  A Banach space X is 

super-reflexive if and only if L~ (~' ,  i~ ;X)  is also super-reflexive. 

The above statement is well known; it is particularly clear if one knows 

Enflo's result in [7]. Since we wish to give a new proof of Enflo's theorem, we 

briefly indicate a direct proof. 

PROOF. The " i f "  part is trivial; so assume that X is super-reflexive. By 

Theorem l . l .a  there exist n and e > 0  such that X is J-(n,e)  convex.  Since 

1 < a < ~, it is not difficult to show that there exists e '  > 0 such that 

'o' I z x,- ''° 

for  all (x~) in X". Therefore:  

. oo,  x 

It is clear that the last inequality remains valid if (x~, . . . ,x , )  is an n-tuple of 

elements of L~(II ' ,~  ;X).  Afor t io r i ,  we obtain: 

inf 2 x , -  Y, x, _-< n - 1 + ( 1 - ~ ) ,  nsupllx, ll 
I ~ k ~ n  I~i~_k k < i ~ n  n 

for every n-tuple (x,,...,x,) in L~(ff,/z ;X). Since 
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n - I +(1 - e')~) u~ < 1, 
n 

we conclude (Th. l.l .a) that Lo(iI',/.~ ;X)  is super-reflexive. 

The origin of the next theorem is a remark of S. Kwapiefi. 

THEOREM 1.3. Let  X be a Banach  space ;  the fo l lowing propert ies are 

equivalent  : 

(i) X is super-reflexive. 

(ii) For  every a in ]1,~[, there exist  a cons tan t  C and r > 1 such that  all 

X - va lued  mart ingales  (X,),~_o sat is fy  : 

sup ii fl II:) 

(iii) There exist  a cons tan t  C and r > i such that  all X -va lued  Walsh-Paley  
mart ingales  (3(. )n ~o sat is fy  : 

(1.4) sup II x . o  I1=----C(E °° IldX. II:) I/'. 

(iv) For  every a in ]l,oo[ there exist  a cons tan t  C and q < ~ such that  all 

X - va lued  mart ingales  (X .  )~ ~_o sat is fy  : 

(o~o lidS, I1~) "q _-< C sup It x ~ °  Ilo. (1.5) 

(v) There exist  a cons tan t  C and q < oo such that  all X - va lued  Walsh-Paley  

mart ingales  (X.).~_o sat is fy  : 

( ~ o  \ , lq  
(1.6) l idS .  II~-~) = C  supllXo II~. 

PROOF. (i) ::~ (ii) and (i) :~, (iv) follow from Remark 1.2, Proposition 1.2 and 

Theorem 1.2 applied to the Banach spaces E = L~(II ' ,P ' ;X),  (i l ' ,P ')  being an 
arbitrary probability space. The fact that the constants involved (namely C, r 

and q) do not depend on the probability space (11', P') follows from the obvious 

remark that the space L~ (l l ' ,P ' ;  X) is finitely representable in I~ (X). (ii) :¢, (iii) 

and ( i v ) ~  (v) are both trivial. 

(v) ~ (i): If X is not super-reflexive, then (Theorem 1.l.b) X has the finite 

tree property;  that is to say (see Remark 1.1), for every integer n there exists an 

X-valued Walsh-Paley martingale (X,,)m__>0 with the properties that: 

I Ix ,  II® -< 1 and inf Ildx~ [I-®- -> ~/2. 
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Assuming that (1.6) is satisfied, we get: 

n ~j~ • (1/2)_- < C, 

which is a contradiction when n is large enough. The only remaining implica- 

tion is ( i i i ) ~  (i): we assume that X is not super-reflexive; since (cf. [13]) 

super-reflexivity is a self-dual property, X* is also non super-reflexive. 

Therefore, by Theoremi. l .b ,  for each integer n and each e < 1, there exists an 

X*- valued martingale (X')m~o such that I1 X" II~ -<- 1 and inf,_~k~, I[ dX'k II-~ >--_ e. 
Since ek .dX'k is s~k_~-measurable, for every 0 > 0  there exists an Mk-,- 

measurable variable Yk-~ with values in the unit ball of X such that (Yk-,(to), 

ekdX'k(to))>= e - 0  for every to in fL and every k = 1,2,---,n. If we form the 

X-valued Walsh-Paley martingale (uniquely) defined by X,, = Z~=, ekYk-, for 

m _--_ n, we can observe that: 

n(e - O) < - ~ E(dXk, dX'k)= E(X,, ,X') <- EIIX,, II. 
k = l  

But on the other hand, II X. (to)I[ --< Z~=, II Yk-,(to)[I -<- n for all to in ll ;  therefore a 

standard computation shows that II X, I1_~ _-> q~, (e, O)n for some function ~o, (e, 0) 

such that q~.(e,0)---~l when e-->l and 0--*0. Hence we can choose e and 0 

such that IIX,, II_~>-_n[2. If we now assume that (1.4) is satisfied, we get 

n/2 <= Cn ~r, which is imposible as soon as n is large enough. A contradiction 

that concludes the proof. 

REMARK 1.3. The above properties are also equivalent to: 

(vi) Every X-valued Walsh-Paley martingale (Xm)m~o such that 

supn I1 dX. < ~ has the property that X , / n  tends to zero almost surely. 

Assume (ii) and let (X,),~o be as in (vi); it follows from (1.3) that the 

martingale (S,),~o defined by S. = ET~,dX, . /m converges to a variable S~ in 

L,~(X) when n ~o0. By the martingale convergence theorem, S, converges 

almost surely to S~ when n ~oo. By Kronecker 's  Lemma ([21], p. 151) almost 

surely Sn/n tends to zero when n---~oo. This proves that (ii) ~ (vi). We only 

sketch the proof of (vi) ~ (i): if X is not super-reflexive, then, by the argument 

used for (iii) ~ (i), for every ~ < 1 and every integer n there exists an X-valued 

Walsh-Paley martingale (X,),~-0 such that IIx. I1-  and Ildx  I1 --<1 for 

k = 1,2,.--, n. An idea due to A. Beck (see [20], Exp. VII, Prop. 7) allows to 

construct an infinite Walsh-Paley martingale (Z~)~__-0 such that sup, II dZo 1 

but also Vto E f/, lira supn_~ [[ Z, (to) [1/n > 0; this contradicts (vi) and concludes 

the proof. 
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REMARK 1.4. In Theorem 1.3, considering martingales is really a necessity: 

if one replaces in properties OiL (iii) and (vi) the word "martingale" by 

"martingale with independent increments",  then one obtains properties all 

equivalent to "/, is not finitely representable in X "  (cf. for example [20], Exp. 

VII); such a property is strictly weaker than super-reflexivity: because of a 

remarkable counterexample of R. C. James [15], there exists a non-reflexive 

Banach space in which l, is not finitely representable (more precisely: in which 

even l~ 3) is not finitely representable). If one replaces again in properties (iv) 

and (v) "martingale" by "martingale with independent increments",  then one 

obtains properties equivalent to "~ l= is not finitely representable in X >> (see 

[19] §1). It is clear that the latter property is strictly weaker than super- 

reflexivity, since l, has it. 

2. Martingales with values in uniformlyconvex spaces 

In a preliminary version of this work, I proved the inequalities of Section 2 

for Walsh-Paley martingales; P. Assouad pointed out to me that it was possible 

to extend them; he extended them further in [I] to obtain several results on 

rearrangements of series in uniformly smooth spaces. T. Figiel has observed 

that his results (as used in Proposition 2.1) give a nicer form to these 

inequalities. The results concerning monotone basic sequences seem to go back 

to [26]. 

THEOREM 2.1 (T. Figiel [9]). (a) There exist constants R and c > 0 such 

that for any Banach space X of  dimension at least 2: 

1 
Ve E ]0,2], -~×(ce)<=~L2(x~(e)<--~x(e) 

Vt EE ]0,oo[, px(t ) <= pL 2tx)(t ) <~ Rpx(t /c ), 

where L ~(X) denotes the space L 2(1-1, tx ;X)  for an arbitrary non trivial measure 

space (ll, Ix). 

(b) For any Banach space X,  the function e--->8×(e)/e is increasing on 

]0,2]. 

PROPOSITION 2.1. 

X satis[ying 

then 

If  (x ,) .  ~o is a monotone basic sequence in a Banach space 

i = n  

sup  oX' l 

Ilxoll+ II)--- 1. 
n = l  
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gives: (s ince II S. II--< II S.+, II). 

or: 

(2.1) 

G. PISIER Israel J. Math., 

Let n be an integer, we write S. for Ei--?~x,; the definition of 8x 

l - ~lls.÷, II) ~x 

s.  +x2----~' + IIs.+,ll~x\lls.÷,llJ 

If II s .+ ,  I1--< 1, Theorem 2.1.b implies that 

/llx.+,llN 
~(11 x.+, II) = II S=+, II ~ I II S.+, II } '  

moreover, by the monotony of the sequence (x.).~_o: 

IIs. I1__< s.  + ~---~ . 

Therefore, (2.1) gives as a consequence: 

IIs. I1+ ~ (llx.+,ll) --< IIs.+, II; 

adding these inequalities when n > 0 we get: 

II xolt + Y~ ~ (ll x.+, II) =< sup II s .+,  II ---- 1. 
n ~ 0  n ~ 0  

< IIs I) ~ -  n + l  • 

which concludes the proof. 
The above proposition has the following dual analogue: 

I f  (x . ) .5o is a mono tone  basic sequence  in a B a n a c h  space  PROPOSITION 2.2. 

X sat is fy ing 

then : 

~ ox(ltx. II)~ 1 

II sup xi = 
n " =  

The proof follows indeed from Proposition 2.1 and Lindenstrauss'  duality 

formulae: 
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V t > 0 ,  px(t)= sup -~-8×.(e) 
0 < v  ~ 2  

]0,2], 8×.(e)>= sup[te-px(t)],>o t2  . (See [17].) Ve E 

In the sequel we make the convention that 8x(e)= +oo whenever  X is a 

Banach space and e > 2. 

If ¢ is an increasing function from R+ to R÷ such that q~(0)= 0, we shall 

define the Orlicz gauge I1" II. on l~ N in the usual way: 

Using Theorem 2.1, the above Propositions and Remark 1.2, we get: 

THEOREM 2.2. There are constants K, L ~uch that for any Banach space X of 

dimension at least 2 and any X-valued square-integrable martingale (Xn),~o the 

following inequalities hold: 

(2.2)  -I1(11 --< supllX. 112--<L II(ll 112)n_->oll,x. 
n 5 0  

REMARK 2.1. i) When d i m X = l ,  (2.2) is valid if K = L  =1 and if we 

substitute to both p× and 8x the function t ---> t 2. Obviously nothing stronger can 

be said. 

ii) The inequalities appearing in Theorem 2.2 can be considered as a 

generalization respectively of a result of Kadec and of Lindenstrauss ([18], Th. 

II.3.6). It should be observed that it is enough to prove only one of the 

inequalities in (2.2), the other can then be proved using Lindenstrauss '  duality 

formula. It is also of interest to notice that if the Walsh-Paley X-valued 

martingales satisfy the left part (resp. the right part) of (2.2) for  some constant 

K (resp. L )  and some function 8x strictly positive on ]0,2] (resp. px such that 

px(t)/t--->O when t--->0), then the space X is super-reflexive since it does not 

have the finite tree property (resp. since its dual does not have the finite tree 

property).  

In [11], Theorem 2.2 is proved for martingales which are the partial sums of a 

Rademacher  series with coefficients in X. 

In the preceding Theorem we have considered square integrable martingales 

since Hilbert spaces are known to be the "mos t "  uniformly convex and the 

"mos t "  uniformly smooth among Banach spaces of dimension at least 2 (cf. 

[22]). For  other cases we shall need the following result of T. Figiel ([8], Prop. 1 

and added in proof): 
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PROPOSITION 2.3. Let q and p be respectively in [2,00[ and in ]1,2]. I f  a 

Banach space X satisfies V e E ] 0 , 2 ] ,  8×(e)>=Ae q (resp. Y t E ] 0 , ~ [  

px(t)<=At p) for some constant A > 0 ,  then there exists a constant B > 0  

(depending only on A and q or p)  such that Ve ~]0,2] ,  6z,~a,,:x~(e)>=Be q 

(resp. Vt  E ]0,oo[, PL~tn'.,;x~ (t ) <---- Bt  p) for any measure space (II',lz ). 

PROPOSITION 2.4. Let X be a Banach space. 

(a) I[[oral l  e in ]0,2], 6 x ( e ) > - A e q f o r s o m e  c o n s t a n t A  > 0  a n d s o m e q  in 

[2,oo[, than there exists a constant B > 0 such that 

EllXoll q + B ~ ElldX. II q ~ supEllX.  II q 
n ~ l  n ~ O  

for all X-valued martingales (X,),-~o. 

(b) I f  for all t in ]0, oo[, px (t ) <= At  p for some constant A and some p in ] 1,2], 

then there exists a constant A such that 

supEI IX . II p __< EllXo ii p +A y~ E lidS. II p 
n n ~ ' [  

for all X-valued martingales (X,),__-0. 

PROOF. (b) follows from (a) by an easy argument of duality, so we prove 

only (a). By Proposition 2.3 we may assume that if (FI',P') is any probability 

space: Ve E ]0,2], 6Lq~n,p,:x~(e)>=Be q for  a constant B >0 .  If (X.).~o is an 

X-valued martingale in L . ( f I ' , P ' ; X ) ,  then (dX.).~=o is a monotone basic 

sequence in Lq (fl', P'; X);  applying Proposition 2.1 we get that sup. 5o E II X.  II q -_< 

1 implies 

(EIIXoll.) '/q + B  ~ E l i a s .  II q ~ 1. 

hence EI]XoIIq+BE.~_,E]]dX.]I"<=I. which concludes the proof by 

homogeneity.  

3. Equivalent  norms  

In order  to shorten the terminology we shall say that a Banach space X is 

p-smooth ,  1 < p =< 2, if there exists an equivalent norm on X for which the 

modulus of smoothness p satisfies Vt > 0 ,  p( t )  <= Ct p for  some constant C. We 

shall say that X is q-convex,.  2 - q < oo, if there exists an equivalent norm on X 

for which the modulus of convexi ty  8 satisfies Ve > 0, 6 (e) >= Ce q for some 

constant  C > 0. 
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Assume that a Banach space (X, II [I) is q-convex (resp. p-smooth), then by 

Proposition 2.4 there exists a constant Cj such that all X-valued martingales 
(3(.)._~o satisfy: 

EIIXoll" ÷ Y~ Elias°  I1" =< C, supEllX. II q 
n ~ l  n 

The following Theorem is a converse to the preceding remark: 

THEOREM 3.1. Let p and q be such that I <= p, q < ~ and let X be a Banach 

space. 

(a) Assume  that there exists a constant C for which all X-valued Walsh- 

Paley martingales (X,).~o satisfy : 

(3.1) EtlXo [[" + ~ EI[dX. [[q <=C ~ supE[IX. [[~, 
n ~ l  n 

then there exists an equivalent norm [ [ on X such that: 

Vx, y ~ x ,  llx II=<lxl <-CIIx II 
(3.2) 

= 2 ' 

in particular, the modulus o[ convexity 8 of  (X, [ I) satisfies : 

Ve >0,  6(e )>=( l lq ) ( e t2C)  ~. 

(b) Assume that there exists a constant C .for which all X-valued Walsh- 

Paley martingales (X.  ),~o satisfy : 

(3.3) sup E 11 X . .  II p _-< c '  (EIIXoll p + .__-,~ E I[ dX. lip), 

then there exists an equivalent norm ] I on X such that: 

1 
Vx, y ~ x ,  ~ II x II ---- Ix I =< II x I1 

(3.4) 

and Ix +y[  p + l x - r l  p ip <Ix +fly II p" 
2 = ' 

in particular, the modulus o[ smoothness p of  (x, l I) 
p(t)<__CPt p. 

satisfies Vt  > O, 
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PROOF. (a) For all x in X we define I x l  as 

( ~ I/q] 

inf CqsupEIIX"llq- °~,~'EIIdX"II°) I '  

where the infimum runs over all X-valued Waish-Paley martingales (X.).~o 

such that Xo= x and sup. EIIX, II ° < ~. {3.1) gives us IIx [ I -  -< Ix I; on the other 

hand, if we consider the Walsh-Paley martingale (X.)._-_o defined by Vn _-__0, 

X. --- x, we get Ix I --< C I[ x II. Let x and y be elements of X, by the definition of 

Ix l and lyl, for all y > 0  there exist Walsh-Paley martingales (X.).~o and 

(Yn).~O such that: 

Xo = x, sup E II x= IW < o~ 

Yo = Y, sup E II Y~ II ° < oo and 

C o sup E II X .  II q - • E II dX~ II ° ~ Ix I ° ÷ 

C ° sup E II Y- II ° - • E II den II ° ~ l Y I ° ÷ ~.  

We then build a new Walsh-Paley martingale (Z.).~o by setting: Zo = (x + y)/2 

and 

V n  >--_ 1, Z n ( e , , e 2 , .  . . ) = ( J - ~ 2 )  X , - , ( e 2 , e s , "  " ) + ( J - - ~ )  Y , - , ( e 2 , e 3 , "  " ); 

since sup. EIIZ. II q = sup. ½(EItX. 

x +y[O 
T ----< Cq sup E[I Z, II ° - Y~ n n~l 

< c  o supEIIXo IW + wll 
= . 2 

II q + E II Y. II °)  < oo w e  can write: 

E It dZ. II o 

= <ix  I° + iYl°+ ' / - I  L~-~ 2 o. 

Since y > 0 is arbitrary, we obtain the announced result. The function x --*Ix l 

is obviously homogeneous on X and from the inequality we just proved follows 

that {x ~ X I Ix I --< 1} is convex; hence x --* I x I is a norm on X. Now if Ix [ _-< 1, 

lyl---1 a n d l x - y [ > e ,  we have 

- T -  <-- 1 -  <-_ 1 -  y - d / /  <=l q \ 2 C / '  

which settles the last assertion. 
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(b) To prove this part two ways are possible: 

(1) One is to define first {x} as 

1 \ , /p~  

where the supremum runs over all X-valued Walsh-Paley martingales such that 

Xo = x and  supn EIIXn II p < o~; and then to define I x l as inf {£,~, {x,}}, where the 

infimum is on all the finite subsets (x,),~, in X such that E,~,x, = x. The same 

idea as in the proof of (a) shows that I I has the desired properties. 

(2) Another way is to use duality: If all X-valued Waish-Paley martingales 

(X,),~o satisfy (3.3), then all X*-valued Walsh-Paley martingales (Xn)~o 

satisfy (3.1) with lip + 1/q = 1; appling part (a) to the space X* we obtain an 

equivalent norm I l* on X* and it is easy to check that the norm I I on X which 

is the dual of the norm [ I* on X*  satisfies the conclusions in (b) if and only if 

I l* satisfies the conclusions in (a). 

REMARK 3.1. The precise converse to Theorem 3.1 is evidently true: If I I 

and II II are two norms on X satisfying (3.2) [resp. (3.4)], then all X-valued 

Walsh-Paley martingales satisfy (3.1) [resp. (3.3)]. 

A particular case of Theorem 3.1 is: 

COROLLARY 3.1. Let (h.).~N be the Haar orthonormal system on the Lebes- 

gue interval. A Banach space X is 2-convex (resp. 2-smooth) if and only if there 

exists a constant C such that 

c(f IP2 
[resp.(3.5) (f IIr. . (t)xn 2 'l/2~C(dt) = £ l lX t l  112) 1/2] 

for all sequences (x .) .  ~N of elements of  X among which only a finite number are 

not zero. 

REMARK 3.2. If X is 2-convex and 2-smooth, then Corollary 3.1 and the 
Theorem 1 in [16] imply that X is isomorphic to a Hilbert space. This result was 

previously proved in [11]. 

Corollary 3.1 gives a complete answer to a problem of [16] (conjecture and 

Remark 1). S. Kwapiefi noticed shortly after [16] appeared that there exist 

spaces (namely L p for p > 2) which satisfy (3.5) but are not isomorphic to a 

Hilbert space. 

The following result improves Enflo's Theorem [7]. In the case of spaces 

with local unconditional structure, it is due to Figiel and Johnson [10]. 
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THEOREM 3.2. Every super-reflexive space is q-convex and p-smooth for 

some q < ~  and some p > 1. 

The main difficulty here is the following Lemma, the proof of which we 

postpone till the end of this paragraph. 

LEMMA 3.1. Let r be a number in ]1,2] and let X be a Banach space; 

assume t h a t - - f o r  some constant D - - a l l  the X-valued martingales (Xm)m~-o 

satisfy : 

(3.6) Vn E N  IIx. II=<=D(n + 1)"" sup IldXk I1o; 
O~k~_n  

then for all p < r there exists a constant Cp for which all X-valued Walsh-Paley 

martingales (Xm )m-_O satisfy : 

sopEIIXo  II p --< (EIIXoll + no, y" EIIdXo I1"). 

Therefore, by Theorem 3.1, X is p-smooth. 

PROOF oFTHEOREM 3.2. It is an easy consequence of Lindenstrauss '  duality 

formula that if X*  is p-smooth ,  then X is q -convex  with 1/q + lip = 1. If X is 

super-reflexive, then (cf. [13]) X* is also super-reflexive, therefore it is enough 

to prove that a super-reflexive space is p-smooth  for some p > 1. Now if X is 

super-reflexive, Theorem 1.3 ensures that the assumption of Lemma 3.1 is 

satisfied for some r > l; hence the conclusion of Lemma 3.1 is valid and if 

1 < p < r, the space X is p-smooth.  

The new result in Theorem 3.2 is that every  uniformly convex or uniformly 

smooth space is q -convex  and p-smooth  for some q < oo and p > l (such 

spaces are super-reflexive by the results of [13]). This can be extended further 

to: 

THEOREM 3.3. 

(a) I f  a Banach space X satisfies px( t ) / t  ~--+0 when t -~O for some a in 

[1,2[, then there exists a number p > o~ for which X is p-smooth. 

(b) I r a  Banach space Xsat i s f ies  8 x ( e ) / e " - - ~  when e--~0 for some et in 

]2,oo[, then there exists a number q < et for which X is q-convex. 

As above,  by an easy duality argument it is enough to prove only (a). We 

shall need some extra notation: we define f o r e a c h  integer n _>- 1 the number 3, x 

as the smallest positive constant 3' for which all X-valued martingales (Xm)m,O 

such that Xo = 0 satisfy 
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I] X. ]]2 =< V sup [[ dXk []2. 
l ~ k ~ n  

Obvious ly :  Vn _-_ I. y ~  _-< n. The  in t roduct ion  o f  the numbers  y x  is mot iva ted  

by:  

LEMMA 3.2. Vn, k _-> I, V,xk --- Y x ? x. 

PROOF OF LEMMA 3.2. If  (X,.)m ~'0 is an X- valued mart ingale such that  Xo = 0, 

then ( X m O ~ o  has the same p roper ty ;  hence  

(3.7) IIx,~ 112~y~ sup IIxin~ - x , ~  ,,~ 112. 
I ~ m ~ n  

m Z "  N o w  set Z ,  = X(in-,~k+j- X(~-,~k; ( ~ )j~o is (for each m -> I) a mart ingale such 

that  Z~  = 0, therefore :  

vm = 1,2, . . .  1127 I1=~ ~,~ sup IIdz7 I1=, 
l<--j~k 

or equivalent ly:  

Vm = l, 2 , . . .  [[ Xink - X~_ ,~  [{2 --< Y ~ sup [[ dX~ ]12. 
(In IJk < j  <=mk 

Combin ing  this last inequali ty with (3.7) we get 

IIx., 1 1 2 ~ , ~  sup IldX1112, 
I ~ j  ~--nk 

which proves  that  x < x x y , k =  y , y k  • 

PROOF OF THEOREM 3.3.a. If p×(t)/t ~ --~0 when  t - ~ 0 ,  an easy  compu ta t i on  

shows  that  p, /n  ~j~ -o0  when  n - - ~ ,  where  we have deno ted  by p, the number  

H(1,1,---,1,0,0,---)]tox, where  1 is repea ted  n times. 

By T h e o r e m  2.2 (excluding the trivial case  X = R), we know that  all 

X - v a l u e d  mart ingales  such that  Xo = 0 must  sat isfy for  all n = l 

II x .  I1-~ N Lp. sup II dX~ Ib 
I ~ i n  ~ n  

in o ther  words ,  we have  that  fo r  all n = 1, y x  <= Lp,, therefore  we also have that  

yX,/n 'J~ --~0 when n --~oo. But it is an easy c o n s e q u e n c e  of  L e m m a  3.2 and the 

fac t  that  n - - ~ y x  is increasing that  "~X/n'~"--~when n - - ~  only  if there  exist  

a number  r > a and a cons tan t  D such that  y x N Dn "" for  all n _-> 1. We are in a 

posi t ion to apply L e m m a  3.1 and we obtain  that X is p - s m o o t h  as soon  as 

a < p < r, which  conc ludes  the proof .  
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One should notice that we obtain the conclusion as soon as there exists an 

integer N for which yx  < N,/~, which is apparently a stronger result. 

PROOF OF LEMMA 3.1. We split the proof into several sublemmas: 

SUBLEMMA 3.1. Under the assumption of Lemma 3.1, for all p < r there 

exists a constant a, such that all X-valued Walsh-Paley martingales (X,~)m~-o 

satisfy : 

(3.8) sup II No 112 =< ,~ II dXo II ~ 

PROOF. Let (X,~),~_~o be an X-valued Walsh-Paley martingale; to prove (3.8), 

there is no loss of generality in assuming that (Xm),.so is finite, i.e. that dX,. = 0 

if m is greater than some integer N. We have then: supn ][ Xn I1~ = II xN II~. Recall 

that M. is the o-algebra on f / =  { - 1, + 1} '~ generated by the n first coordinates; 

we shall make use of the fact that for all n > 1 the variable to ~[I dX.(to)[[ is 

Mn_,-measurable. For simplicity, we set 

and proceed to prove (3.8). 

For each integer k ~ 0, we define a random subset A~ (to) of N in the following 

way: 

Ak(to) = n>=O S i ldX~(o~)l l<~_r;  " 

The following properties of these subsets are easily checked: 

(i) If k ' ~ k "  then Ak,(to)t3Ak.(to)=O and Ok~oAk(to)={n>O] 

I l d X . ( , o ) l l # o }  for all to in fl. 

(ii) For each k > 0, the cardinal of Ak (to) noted ] A~ (to) [ satisfies: Vto E f l ,  

IA~(~)I<2 ~+'. 
(rio F o r e a c h k = > 0 a n d e a c h n > l t h e s e t { ~ o E f t [ n ~ A k ( ~ o ) } i s i n ~ _ , .  

We immediately deduce from (i) that: 

For each k N 0 we can define a sequence of stopping times (TI) .  ~o by setting: 
V~ E ~  

T~(~)=inf{nEAk(~)} and for A = L 2 , " "  

T~ (~ )  = inf{n E A~(~) ,  n > T~_,(~)} with the convention inf ~b = N + 1. 
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By property (iii) these stopping times are "predictable" ,  that is: VA ->_ l, T~ - l 

is also a stopping time; therefore  VA >_- l 

• ,T~ ( . ) )  = 0  (3.10) E ~_, (dXr~(., . 

(T~)~__>o and by (ii): By the definition of the k 

ak(oJ) C o~ <l.~Jk., {T~ (~o)}; 

therefore,  since dXN÷~ = 0: 

dXo(~, ) = 0 ~ , .  dXT~.,(,,, ). 
nEAk(te) 

Now if for  each ,~ _>-0 we define -k X^ (')  as 

dXT~, )(" ), 

then (3.10) ensures that -k _ (X~)~_~o is a martingale with respect  to the sequence of 

~r-algebras (Mv~)~o; applying (3.6) to this martingale, we obtain: Vk _-> 0 

(3.11) . ~ ( . ,  dX.(.)2--II2~,~, ,11:-<_ D2 '"+',/~ ..~<2.*,sup II dX'I 1[=; 

returning to the definition of Ak(" ), we observe that for all )t ---0: 

S 
(3.12) It dX~ IP--< 2k/p • 

Combining (3.12), (3.11) and (3.9), we obtain: 

tl X~ II~ <= D2'" ( ~ 2~("r-"~') =,, 

This concludes the proof (since l/r - 1/p < 0) with 

ap = D2 t/" ~ 2 k"/~-'p) < oo. 
k ~ 0  

SUBLEMMA 3.2. Assume that the conclusion o[ Sublemma 3.1 is valid, then 
[or all p < r there exists a constant [3p such that all X-valued Walsh-Paley 
martingales (X,, ),-~o satis[y 

( 1 t (3.13) supc"'2P{supllX°ll>c} <=13"(E ''~ 

PROOF. If (X~),_-o is an X-valued martingale, then ([[X,, 1[~)~o is a submar- 

tingale, therefore  we have by Doob's  inequality ([21], p. 69): 
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(3.14) VC > 0, C ~P(sup II x .  II > c)  -<_ sup EII xm II 2 

Consider an X- valued Walsh-Paley martingale (X, ) ,~o  such that 

~.  ooE 11 dXo II ~ _-< 1, and set for n = 0, 1, . . . ,  V, = Eo~k-~, II ask 11". Given a > 0, we 
can define a stopping time T by setting: 

Vco E l i ,  T(¢o) = inf{n _->01V.÷,>aP}. 

We can write, for c > 0 

e(supllX. II>c)-<_ P ( T < ~ ) + P ( T = ~ ,  supllXo II> c)--<e(T<~)+ 
(3.15) 

P{T >0, supllX.^~ll> c); 

applying (3.14) and (3.8) to the martingale (br>o~X.^r)._->o, we get: 

e (T  > 0, sup II x .  ^~11 > c)_-< 1 sup E(1,~>o, II x o  ^ ~]1~) 
C 

2 2 
-= ( ~ . l c ) I t '  '" ' "  ,2 I ( T > O } V T  ~ • 

The definition of T yields: l~r>or Vr <= a p, therefore we get: 

P(T > O, supln X . ^  Tll> c ) <= o~(a/c  )~; 

on the other hand, 

P(T <oo)=P{sup V. > aP} < l/a p. 

With these estimates (3.15) implies: 

e(suplIX, l[>c) -< 1/a p +a~(a /c )  2 

for all a, c > 0. Choosing (for simplicity) a = N/c-, we get Vc > 1, 

e(sup II X. II > c )  - (1 + a~)(l]cP/2), 

which concludes the proof with /3p = (1 + a,)2"21P. 

The argument of the above proof is classical, and appears in almost every 

book concerned with martingale inequalities in the scalar case ([12], [21]). 

The proof of the next lemma is directly inspired from the methods in [5]. Its 

redaction has been simplified thanks to an observation of T. Figiel. 

SUBLEMMA 3.3. Assume that the conclusion of Sublemma 3.2 is valid, then 
[or all p < r there exists a constant y, such that all X-valued Walsh-Paley 

martingales (X.).~o satisfy : 

(3.16) SUoP c P P {sup [[ X. ]1 > c }  ---(Tp )P ,~o E H dX, H". 
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PROOF. Let us assume that (Xm),.=o is a "finite" Walsh-Paley martingale, so 

that dXm = 0  for all m =>N and that ~:.__>oEIIdX, IIp -< 1. Let M be a "large" 

integer. We define the shift 0 on [ / = { -  1, + 1} N by; 0 ( e , , e 2 , ' " ) =  (e2, e 3 , ' " ) ,  

and we consider the Walsh-Paley martingale (Z,, )m__>,, uniquely defined by: 

V m  >= M N ,  Zm = XN ,+ ~,  emXN_, o O m M '/~ 
j = l  

As is readily seen, E?, :,, E II d Z ,  II" =< 1. To lighten the notations, we denote the 

random variable sup.__-ollX. II by @. 

We observe that 

sup M -'/" Opo O 'N <_ 2 supll Z. II- 
(I<~j----<M- I n ~ 0  

We choose Co large enough so that (213p/Co) 0/2 ~< ! - e- ' ,  and we apply 3.13 to the 

martingale (Z,.),, _-,,: 

P I  sup 
~O"~i<--M I 

<- (2[3,/Co) p/2 <= ! - e - ' .  

When j = 0 , . . . , M - 1 ,  the variables ¢,o 0 jN are independent and equidistri- 

buted, therefore: 

e-'_<-P / sup M-""dpoOJN<-Co}=(P{M-' /pcI)<=Co})  M, 

as a consequence: P{@>coM'~"}<- I - e - ' /M<= I /M,  which we proved for an 

arbitrary integer M. From this last fact, (3.16) is easily drawn. 

We can now conclude the proof of Lemma 3.1 by an argument similar to that 
of Sublemma 3.2: 

Let p be given with p < r ;  we chOose p, with p < p , < r .  If (X,,),,_-o is an 

X-valued Walsh-Paley martingale, we define for each c > 0 a stopping time T 

by: 

Vo~6~fl, r ( w ) = i n f { n = > 0  ~ Ildg,(o~)ll.,>cp,}. 
( ] ~ j  _~--n + I 

We have: 

P{sup I1X, [t > c} =< P{T < ~} + P{T = oc supl [ X,^  r[[ > c} 

> c + I,T o  II JI 
I = 0  

<-e d X .  tl"' > c  + ^ ~ , l t d X ,  lt p, . 
t \ n  -----0 n ~ O  
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If we multiply the last line by pcP-tdc and integrate with respect to c. we get: 

E supllX. II ° ~ E  dX~ [[0. 1 + (T.,F' + (3'~Y' 7. 
_> 

it remains to observe that: 

II r II II ) 
n ~ O  

to conclude the proof of Lemma 3.1. 

The final step can be proved alternatively by an argument of interpolation. 

REMARK 3.3. Let a, p, q be given in [1,~[ and consider the following 

properties See(a), c¢~(a) for a Banach space X: 

~(~)I There exists a constant so(a) such that all X-valued 

martingales (Xm)m__-0 satisfy: 

Esup [1X. I[ ~ =< sp (a)  E [[ dX. I[ ° . 
n ~ 0  

%'(a) I 
There exists a constant cq(a) such that all X-valued 

martingales (Xm),.~o satisfy 

E dXo rl ~ <= c~ (,~) ~ sup II xo II °. 
n ~ 0  

We have seen (Theorem 3.1 and Proposition 2.4) that X is p-smooth  iff X has 

the property 6ep(p) and that X is q-convex iff X has the property ~ ( q ) .  By 

reproducing the basic techniques of the proofs of the Burkholder-Davis-Gundy 

inequalities, it is possible to show that: (i) for each p in ]!.2], all the properties 

5e.(a) are equivalent when a runs in [1,~[. (ii) for each q in [2,o~[. all the 

propei'ties 5e~(a) are equivalent when a runs in [ i ,~[.  

We give only indications on the proof: we first notice that the Burgess-Davis 

decomposit ion (see [12], p. 91) is obviously true for Banach space valued 

martingales with the same proof. If i <- a </3, the proof that fi~. (/3) ::> 9°. (a)  

and ~q (/3) :::> ~q (a)  can be achieved by reproducing, for instance, the method of 

[21], page 181-182. Taking into account the obvious equivalence of " X  has 

9°. ( a ) "  and " X *  has ~ , ( a ' ) " w h e n  a E]l,oo[ and l /a  + 1/a '= l, lip + l / p ' =  1, 
we observe that it remains only to prove that 9°(1) implies 5ep(a) for some 

a > l and that ~q(1) implies ~q(a)  for some a > I. These last implications can 
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be proved easily by using the results of [5], as we already did in the proof of 

Sublemma 3.3. 

The above remark was independently observed by P. Assouad. 

4. Remarks and problems 

I do not know if Lemma 3.1 can be proved assuming only that (3.6) is 

satisfied by all the X-valued Walsh-Paley martingales. The following question 

is related to this problem: 

QUESTION 1. Let  q be given in ]2,oo[. Assume that for any equivalent norm 

on a Banach space X the corresponding modulus of convexi ty  satisfies 

~(e) /e  q 74~ when e tends to zero. Is it true that there exists for all n and d < I 

an X-valued Walsh-Paley martingale (Xm),.__>o with the property that: U X. [l~ < 1 

and Vto E l L  Vk = 1 ,2 , . . . ,n ,  l l d X ~ ( ~ , ) l l > - d / n " " ?  

A positive answer to Question ! would give a natural extension of Theorem 

l. l .b.  

B. Beauzamy has defined in [2] the notion of uniform convexi ty  of an 

operator.  If u is an operator  from -Y to X, the modulus of convexi ty  of u is 

defined as: 

c%(e)=inf{ 1 -  ~ Ix, Y ~ Y, Irxll--<l, IlYll--<l, Ilu(x - y ) l l~  e } .  

Similarly, one can define the modulus of smoothness of u as: 

p, (t) = sup {11 x + tu (y)ll + II x - t u  ( y  ~11_ I I x ~ x ,  y ~ Y, II x II = II y II-- 1 } 
2 

It is clear that some of our results immediately extend to the case of operators 

with mere notational changes (at least Theorem 3.1 and Lemma 3.1). But, as 

pointed in [2], the analogue of Theorem 3.2 for operators is false. 

A Banach space X is called of type p if for each sequence (x°) of elements of 

X such that •llx° tl p < 2  the Rademacher  series Er,(t)x, is convergent  for 

almost every t in [0,1] (we denote (r,)  the Rademacher  functions on the 

Lebesgue interval). 

A counterexample due to James ([15]) shows that there exists a Banach space 

which is of type p for some p > 1 but which is p-smooth  for no p > 1. In view 

of this counterexample,  the following question of H. P. Rosenthal is of 

particular interest: 

QUESTION 2. IS every space of type 2 super-reflexive? 
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We wish to give a (very) partial result on this question: Let  (g,)~-, be a 

sequence of or thonormal  Gaussian variables with mean zero on the Lebesgue 

interval, and let X be a Banach space. We define for  each n = 1,2, . . -  the 

numbers  a x and b x as the smaller positive constants  respect ively a and b such 

that 

o( l x iq t 
for all n- tuples  (x~, . . . ,x , )  of elements  of X. 

S. Kwapiefi  has proved in [16] that sup, a,Xb, x < 2  if and only if X is 

isomorphic  to a Hilbert space. Using the same idea as his, we prove: 

PROPOSITION. I f  a X b ~ / L o g n  t ends  to zero  w h e n  n - - - ~ ,  then  X is super -  

ref lexive.  

PROOF. Let  (u,j) be the n × n matrix of an isometry on l~. By the rotational 

invariance of the canonical Gaussian measure  on l~. we have, for all n- tuples  

(x , )  of elements  of X:  

uoxl b ,  <= a x x 2 

Since matr ices such as u,.j correspond to the extremal points of the unit ball of 

B(/7),  it is clear, by an argument  of convexity,  that the above inequality 

remains valid if u~.j defines an operator  of norm less than 1 on I~. The Hilbert 

matrix (hTj) of order n is defined by: 

I 
hi~= ~ n + l - i - j  if i + j ~ n + l  

Vi,  j < n ,  
= ~. 0 otherwise 

It is known (see [25]) that when n goes to infinity the norm of (hT~) as an 

operator  on l~ is bounded by some constant  H. 

Assume that X is not super-reflexive, then ([13]) for  all integer n there exists 

x , , . . . , x ,  in the unit ball of X such that: V(a~)ER" 

 sup I k ~  -= OLi <- i=1 OhXi ; 

therefore  we must have: V(a~)~ R" 

1 t - ° ~ b .  I ~ , f  2 2 j=l i =1  k ~ n  
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If we denote by ~, the left-hand side of the preceding inequality for  

a ,  = a., . . . . .  a° = l/x/n, an e lementary  computat ion shows that ~0,/Log n 

does not tend to zero when n--->oc; therefore  aXbX/Logn does not either, 

which proves  the proposition. 

As noticed by T. Figiel, an improvement  of the methods of [I0] yields that if 

a Banach space X with local unconditional structure is of type p, p <= 2, then X 

is p - smoo th ;  the example in [15] suggests 

QUESTION 3. If  p E ] 1,2]. does there exist a super-reflexive Banach space of 

type p which is not p - s m o o t h ?  
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